Mangrove estuaries are not immune to the threats posed by climate and anthropogenic constraints on aquatic environments. In the Nyong River estuary, mangrove ecotone has capital importance for biodiversity conservation due to its localization in the Douala-Edéa protected area. For this study, seven quadrats were delimited in aim to evaluate mangrove structure and assessed his interplay with sediment and water physicochemical characteristics. The study revealed a total of 120 individuals of 4 regularly encountered species over a distance of 14 km: Rhizophora racemosa, Avicennia germinans, Rhizophora harrisonii and Phoenix reclinata palms. The marshy soils under the mangrove have Total Nitrogen percentages varying between 0.04 and 0.68%. Total Organic Carbon (from 2.20 to 8.61%) and Total Organic Matter (from 3.66 to 14.64%) contents have a similar pattern. The ratios of Carbon and Nitrogen (C/N) reflect the presence of organic matter and plant debris over a large proportion of the estuary. The ratio of Nitrogen and Phosphate (N/P) reflects the low availability of nitrogen in relation to phosphorus. The cation elements evolve on average in the order Ca2+ ˃Mg2+ ˃Na+ ˃K+. This study provides information that would help explore linkages for future research on biogeochemical balance in mangrove sediment and their implementation.
Published in | Journal of Water Resources and Ocean Science (Volume 13, Issue 2) |
DOI | 10.11648/j.wros.20241302.11 |
Page(s) | 23-41 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Mangroves, Physicochemical Parameters, Sedimentary Physics, Nyong Estuary, National Park Douala-Edea
2.1. Study Area
2.2. Data and Method
2.2.1. Field Sampling
2.2.2. Laboratory Analysis
2.2.3. Data Analysis
(i). Dendrometric Analysis of the Mangrove
(ii). Physical Parameters of the Sediment
(iii). Chemical Parameters of the Sediment
(iv). Statistical Analysis
3.1. Structural Characterisation of the Mangrove
3.1.1. Overall Characterisation of the Study Area
Quadrats | Sample points | Species (number of specimens) | Observations made |
---|---|---|---|
Q1 | P1 (3°15’37”N; 9°54’47’’E) | Avicennia germinans (2) Rhizophora harrisonii (8) | Presence of stump sprouts Slightly open canopy |
Q2 | P2 (3°15’45’’N; 9°54’7’’E) | Avicennia germinans (4) Phoenix reclinata (13) | Pneumatophores covered by sea grass and silting |
Q3 | P3 (3°15’03’’N; 9°54’3’’E) | Rhizophora racemosa (17) | Full mangrove Closed canopy |
Q4 | P4 (3°15’55’’N; 9°56’11’’E) | Phoenix reclinata (11) Rhizophora racemosa (12) | Canopy completely open Presence of invasive species containing stilt roots |
Q5 | P5 (3°16’36’’N; 9°57’32’’E) | Avicennia germinans (11) Rhizophora racemosa (7) | Open canopy Roots and invasive species |
Q6 | P6 (3°18’31’’N; 9°59’33’’E) | Avicennia germinans (13) Rhizophora racemosa (4) | Closed canopy Presence of discharge |
Q7 | P7 (3°19’32’’N; 10°01’23’’E) | Avicennia germinans (18) | Scoured earth. Closed canopy Sandy and clayey soil Presence of stump sprouts |
3.1.2. Vertical Stratification of the Mangrove
3.2. Physicochemical Characterization of Sediments and Pore Waters
3.2.1. Description of the Cores
3.2.2. Physicochemical Characteristics of Pore Waters
3.2.3. Chemical Characteristics of Sediments
Parameters | Range (cm) | |||||
---|---|---|---|---|---|---|
0-10cm | 10-20cm | |||||
mean±SD | Min | Max | mean±SD | Min | Max | |
TP (mg/kg) | 648.71±122 | 514 | 823 | 625.14±144.14 | 485 | 856 |
TN (%) | 0.33±0.24 | 0.04 | 0.68 | 0.31±0.24 | 0.04 | 0.65 |
S (mg/kg) | 5.20±3.70 | 0.68 | 10.56 | 5.48±4.67 | 0.65 | 12.83 |
TOC (%) | 4.78±2.50 | 2.20 | 8.05 | 4.89±2.86 | 1.80 | 8.61 |
TOM (%) | 8.27±4.47 | 3.66 | 14.05 | 8.428±4.92 | 3.10 | 14.64 |
(i). Total Nitrogen
(ii). Total Organic Carbon
(iii). Total Phosphorus
(iv). Sulphates
3.2.4. Exchangeable Bases (Potassium. Sodium. Calcium and Magnesium)
Parameters | Range (cm) | |||||
---|---|---|---|---|---|---|
0-10cm | 10-20cm | |||||
mean±SD | Min | Max | mean±SD | Min | Max | |
Ca2+ (cmol+/kg) | 5.98±5.33 | 1.96 | 15.66 | 6.261±6.16 | 0.96 | 18.24 |
Mg2+ (cmol+/kg) | 2.46±2.22 | 0.46 | 5.95 | 2.581±2.48 | 0.46 | 7.15 |
K+ (cmol+/kg) | 0.68±0.42 | 0.31 | 1.25 | 0.72±0.596 | 0.22 | 1.58 |
Na+ (cmol+/kg) | 1.86±1.28 | 0.48 | 3.82 | 1.887±1.479 | 0.39 | 4.17 |
3.2.5. Nutrient Ratios (N/P; C/SO4. C/N; C/P)
4.1. Dendrometrical Structure of the Estuary Mangrove
4.2. Assessment of Physical and Chemical Parameters of Mangrove Sediments
4.3. Variability of Nutrient Content in Mangrove Sediment
[1] | Bishop, J. K. B., Ketten, D. R., Edmond, J. M. Chemistry, Biology and Vertical Flux of Particulate Matter from the Upper 400 m of the Cape Basin in the Southeast Atlantic Ocean. Deep-Sea Research. 1978, 25(12), 1121-1161. |
[2] | Gogina, M., Zettler, M. L., Vanaverbeke, J., Dannheim, J., Van Hoey, G., Desroy, N., Wrede, A., Reiss, H., Degraer, S., Van Lancker, V., Foveau, A., Braeckman, U., Fiorentino, D., Holstein, J., Birchenough, S. N. R. Interregional comparison of benthic ecosystem functioning: Community bioturbation potential in four regions along the NE Atlantic shelf, Ecol. Indic. 2020, 110: 105945, |
[3] | Romano, E., Bergamin, L., Parise, M. Benthic Foraminifera as Environmental Indicators in Mediterranean Marine Caves. A Review. Geosciences. 2022, 12(42), |
[4] | Khan, H., Brush, G. S. Nutrient and metal accumulation in a freshwater tidal marsh. Estuaries. 1994, 17(2), 345–360. |
[5] | Lacerda, L. D., Ittekkotb, V., Patchineelama, S. R. Biogeochemistry of Mangrove Soil N Organic Matter: a Comparison Between Rhizophora and Avicennia Soil Ns in Southeastern Brazil, Estua. Coast. Shelf Science. 1995, 40(6), 713-720. |
[6] | Murdiyarso, D., Hanggara, B. B., Lubis, A. A. Sedimentation and soil carbon accumulation in degraded mangrove forests of North Sumatra, Indonesia. BioRxiv. 2018, 25p. |
[7] | Ataullah, M., Chowdhury, M. R., Hoque, S., Ahmed, A. A. Physico-chemical properties of soils and ecological zonations of soil habitats of Sundarbans of Bangladesh. Int. J. Pure Appl. Res. 2017, 1(1), 80 – 93. |
[8] | Rajal, P., Lamb, C., Roshan, B., Kamboj, R. D., Harshad, S. Physico-chemical characteristics of mangrove soil in Gulf of Kachchh, Gujarat, India. Advances in Environmental Research. 2019, 8(1), 39-54. |
[9] | Dahdouh-Guebas, F. Mangrove forests and tsunami protection. In: McGraw-Hill (éd). Yearbook of Science & Technology, New York, USA. 2006, 187-191. |
[10] | Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine Coastal and Shelf Science. 2008, 76, 13p. |
[11] | Howarth, L. M., Waggitt, J. J., Bolam, S. G., Eggleton, J., Somerfield, P. J., Hiddink, J. G. The effects of bottom trawling and primary production on the biological traits composition of benthic assemblages. Marine Ecology Progress Series. 2018, 602, 31-48. |
[12] | Guesdon, G., De Santiago Martín, A., Galvez-Cloutier, R. Restauration du lac La Retenue, l’AngeGardien, Québec. Phase I: Caractérisation des sédiments et qualité de l’eau de surface, Département de génie civil et de génie des eaux. Université Laval, Québec. 2014, 37 p. |
[13] | Benon, P., Blanc, F., Bourgade, B., David, P., Kantin, R., Leveau, M., Romano, J. C., Sautriot, D. Distribution of some heavy metals in the Gulf of Fos. Marine Pollution Bulletin. 1978, 9(3), 71-75. |
[14] | Safiur Rahman, M., Khan, M. D. H., Jolly, Y. N., Kabir, J., Akter, S., Salam, A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci Total Environ. 2019, 660, 1610–1622. |
[15] | Zhou, Y. W., Zhao, B., Peng, Y. S., Chen, G. Z. Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments. Marine Pollution Bulletin. 2010, 60(8), 1319-1324. |
[16] | Cotnoir, L. J. Marsh soils of the Atlantic coast. In. Ecology of halophytes. (eds.) R. J. Reimold, W. H. Queen, Acadernis press, INC. New York. 1974, 441-448. |
[17] | Naidoo, G., Raiman, F. Some physical and chemical properties of mangrove soils at Sipingo and Mgeni, S. Afr. J. Bot. 1982, 1(4), 85-90. |
[18] | Mangwa Dongang, C., Nkwatoh, A. F., Asongwe, G. A., Kamah, P. B. An Assessment of the Physico-Chemical Parameters of Mangrove Soils that Support Nypa fruticans and Other Mangrove Species Establishment in the Cameroon Estuary. Asian Soil Research Journal. 2021, 5(2), 18 p. |
[19] | Bomfim, M. R., G. Santos, J. A., Costa, O. V., da Conceiçao, J. N., da Silva, A. A., de Souza Souza, C., de Almeida, M. C. Morphology, Physical and Chemical Characteristics of Mangrove Soil under Riverine and Marine Influence: A Case Study on Subaé River Basin, Bahia, Brazil. Mangrove Ecosystem Ecology and Function. 2018, 7, 133 – 162. |
[20] | Souza, H. F., Guedes, M. L. S., Oliveira, S. S., Santos, E. S. Alguns aspectos fitossociológicose nutricionais do manguezal da Ilha de Pati, Bahia, Brasil. Sitientibus. 1996, 15(1), 151-165. |
[21] | Tomlinson, P. B. The botany of mangroves. Cambridge University Press. 1986, 413p. |
[22] | Duke, N. C. Mangrove floristics and biogeography. In: Robertson, AI., Alongi, DM., (eds) Tropical mangrove ecosystems, Washington DC, American Geophysical Union, USA. 1992, 63– 100. |
[23] | Jayatissa, L. P., Dahdouh-Guebas, F., Koedam, N. A review of the floral composition and distribution of mangroves in Sri Lanka. Botanical Journal of the Linnean Society. 2002, 138(1), 29–43. |
[24] | Cannicci, S., Burrows, D., Fratini, S., Lee, S. Y., Smith III, T. J., Offenberg, J., Dahdouh-guebas, F. Faunistic impact on vegetation structure and ecosystem function in mangrove forests. Aquat. Bot. 2008, 89(2), 186-200. |
[25] | Nagelkerken, I., Blaber, S., Bouillon, S., Green, P., Haywood, M., Kirton, L. G., Meynecke, J. O., Pawlik, J., Penrose, H. M., Sasekumar, A., Somerfield, P. J. The habitat function of mangroves for terrestrial and marina fauna. Aquat. Bot. 2008, 89(2), 201-219. |
[26] | Nfotabong Atheull, A., Din, N., Longonje, S. N., Koedam, N., Dahdouh-Guebas, F. Commercial activities and subsistence utilization of mangrove forests around the Wouri estuary and the Douala-Edea reserve (Cameroon). Journal of Ethnobiology and Ethnomedicine. 2009 5(35), 14 p. |
[27] | Krauss, K. W., Lovelock, C. E., Mckee, K. L., Lopez-Hoffman, L., Ewe, S. M., Sousa, W. P. Environmental drivers in mangrove establishment and early development. Aquat. Bot. 2008, 89(2), 105-127. |
[28] | MINEPDED-RCM. Atlas des mangroves du Cameroun. 2017, 14 p. |
[29] | Mama, A. C., Youbouni Ghepdeu, G. F., Ngoupayou Ndam, J. R., Bonga, M. D., Onana Fils, M., Onguene, R. Assessment of water quality in the lower Nyong estuary (Cameroon, Atlantic Coast) from environmental variables and phytoplankton communities’ composition. African Journal of Environmental Science and Technology. 2018, 12(6), 198 -208. |
[30] | Mama, A. C. Structure et dynamique hydrobiogéochimique des estuaires du Cameroun: cas du Nyong et de la Kienké sur la Côte Atlantique méridionale au sud de la Sanaga. Thèse. 2019, 250 p. |
[31] | Nfotabong Atheull, A. Utilisation des mangroves par les habitants des zones côtières près de Kribi, du Nyong et de l’estuaire du Cameroun. Mémoire de DEA, Université Libre de Bruxelles-ULB, Bruxelles, Belgique. 2008, 80 p. |
[32] | Mama, A. C., Oben, L. M., Dongmo, T. C., Ndam, N. J. R., Motto, I., Ayina, O. L. M. Tidal Variations and its Impacts on the Abundance and Diversity of Phyoplankton in the Nyong Estuary of Cameroon. J. Multidiscip. Eng. Sci. Technol. 2016, 3(1), 3667-3675. |
[33] | Mama, A. C., Bodo, W. K. A., Ghepdeu, G. F. Y., Ajonina, G. N., Ndam, J. R. N. Understanding Seasonal and Spatial Variation of Water Quality Parameters in Mangrove Estuary of the Nyong River Using Multivariate Analysis (Cameroon Southern Atlantic Coast). Open Journal of Marine Science. 2021, 11(3), 103-128. |
[34] | Dzana, J. G., Ngoupayou, J. R. N., Tchawa, P. The Sanaga Discharge at the Edea Catchment Outlet (Cameroon): An Example of Hydrologic Responses of a Tropical Rain Fed River System to Changes in Precipitation and Groundwater Inputs and to Flow Regulation. River Research and Applications. 2011 27(6), 754-771. |
[35] | Giresse, P., Megope-Foonde, J. P., G. Ngueutchoua, G., Aloisi, J. C., Kuete, M., Monteillet, J. Carte sédimentologique du plateau continental du Cameroun. Éditions de l'ORSTOM/IRD. 1996, 111, 46 p. |
[36] | Boye, M., Baltzer, F., Caratini, C. Mangrove of the Wouri Estuary. Inte rnational Symposium of Biology and Management of Mangrove. Honolulu. 1974, 8(11), 435-455. |
[37] | Zogning, A., Kuete, M. L’équilibre écologique du littoral Camerounais: Données géographiques du problème. Xe Coll. Sepanrit Leget, Cayenne. 1985, 229-237. |
[38] | Morin, S., Kuété, M. Le littoral Camerounais: Problèmes morphologiques. Travaux du Laboratoire de géographie physique appliquée. 1988, 11, 5-52. |
[39] | Giresse, P., Cahet, G. Organic Fluxes of Cameroonian Rivers into the Gulf of Guinea: A Quantitative Approach to Biodegradation in Estuary and Plume. Oceanologica Acta. 1997, 20(6), 837-849. |
[40] | Chougong, D. T., Mama, A. C., Ekoa, A., Ngualeu Siewe, G. C., Djoumo Nono, S. C., El-Amier, Y. A. Distribution of trace metals and radionuclides contamination in two sections of sediments cores from the Nyong estuary, Cameroon, southern Atlantic coast. Regional Studies in Marine Science. 2022, 56, |
[41] | Toteu, S. F., Van Schmus, W. R., Penaye, J., Michard, A. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the Pre-Pan-African history of central Africa. Precambr. Res. 2001, 108, 45–73. |
[42] | Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L., Cadamuro, L. Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia. 1998, 115(1-2), 39-53. |
[43] | Mendoza, A. B., Alura, D. P. Mangrove structure on the Eastern Coast of Samar Island, Philippines. In: D. E. Stott, R. H. Mohtar and G. C. Steinhardt (eds.). 2001, 423-425. |
[44] | Kangas, P. Mangrove forest structure on the Sittee river, Belize. Natural Resources Management Program. University of Maryland. 2002, 7 p. |
[45] | Marchand, C., Allenbach, M., Lallier-Vergès, E., Sabrina Virly, L. D. P., Rataud, C. Structure écologique et bilan des processus biogéochimiques au sein d’une mangrove. IRD-Nouvelle Calédonie. 2008, 131 p. |
[46] | Chougong, D., Ekoa, A., Ngueutchoua, G., Yongue, R., Fouateu. Mineralogy and geochemistry of Lobe river sediments, SW Cameroon: Implications for provenance and weathering. Journal of African Earth Sciences. 2021, 183(3), 104320, |
[47] | Hussenot, J., Martin, J. L. M. Assessment of the quality of pond sediment in aquaculture using simple, rapid techniques. Aquaculture International. 1995, 3(2), 123-133. |
[48] | P. Raimbault, Slawyk, G., Coste, B., Fry, J. Feasibility of measuring an automated colorimetric procedure for the determination of seawater nitrate in the 0 to 100 nM range: examples from field and culture. Mar. Biol. 1990 104, 347-351. |
[49] | Guesdon, G., De Santiago, M. A., Galvez-Cloutier, R., Restauration du lac La Retenue, l’Ange-Gardien, Québec Phase I: Caractérisation des sédiments et qualité de l’eau de surface Département de génie civil et de génie des eaux. Université Laval, Québec. 2014, 37 p. |
[50] | Singh, P., Major. trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chem. Geol. 2009, 266(3-4), 242 – 255. |
[51] | Ekoa Bessa, A. Z., Ngueutchoua, G., Ndjigui, P. D. Mineralogy and geochemistry of sediments from Simbock Lake, Yaoundé area (southern Cameroon): provenance and environmental implications. Arabian Journal of Geosciences. 2018, 11(22), 710p. |
[52] | Munsell. Munsell Soil Color Charts, Revised Washable. GretagMacbeth. 2000, 10p. |
[53] | Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., Maynard, V. Early oxidation of organic-matter in pelagic sediments of the eastern equatorial atlantic - suboxic diagenesis. Geochimica et Cosmochimica Acta. 1974, 43(7), 1075-1090. |
[54] | Postma, D., Jakobsen, R. Redox zonation: equilibrium constraints on the Fe (III)/SO4 reduction interface. Geochimica et Cosmochimica Acta. 1996, 60(17), 3169-3175. |
[55] | Deborde, J. Processus biogéochimiques des zones intertidales des systèmes lagunaires: le Bassin d'Arcachon (SW, France). Thèse de doctorat de l’Université de Bordeaux 1, Bordeaux. 2007, 210 p. |
[56] | Molnar, N. Impact des effluents de la crevetticulture sur la dynamique de la matière organique benthique et leurs implications sur les processus biogéochimiques dans une mangrove (Nouvelle-Calédonie). Thèse de doctorat. 2012, 288 p. |
[57] | Vieillefon, J. Étude des variations du pH et dy rH dans les sols de mangroves de Basse-Casamance. Comm. Vie Conf. West. Afric. Sc. Assoc., Abidjan. 1969, 36 p. |
[58] | Pauwels, P. M., van Ranst, E., Verloo, M., Mvendo, Z. E. A. Manuel de laboratoire de pédologie. Méthodes d’analyses de sols et de plantes, équipements, gestion de stocks de verrerie et de produits chimiques. AGCD, Publications Agricoles. 1992, 28, 265p. |
[59] | Chen, R., Twilley, R. R. Patterns of Mangrove Forest Structure and Soil Nutrient Dynamics Along the Shark River Estuary, Florida. Estuaries. 1999, 22(4), 955-970. |
[60] | Olivry, J. C. Fleuves et Rivières du Cameroun. Hydrologie ORSTORM. Unité de recherche. 1986, 107(9), 733 p. |
[61] | Kouogang Tchuenkam, F. C., Mama, A. C., Gah-Muti, S. Y., Araujo, M. Variability of Sea Breezes Over the Cameroonian Coast and Their Interaction with the West African Monsoon. Front. Earth Sci. 2022, (10), |
[62] | Ndema, E., Sone Essoh, W., Ajonia, G. N., Etame, J., Din, N., Diyouke Mibog, E. Dynamique de croissance et taux de mortalité de Rhizophora spp. dans les mangroves de l'estuaire du Rio del Rey: Site de Bamusso (Sud-Ouest Cameroun). Journal of Applied Biosciences. 2015, 85(1), 7824-7837. |
[63] | Martin, D. Géomorphologie et sols ferrallitiques dans le Centre Cameroun. Cah. Orstom, sér. Pédol. 1967, (2), 189-218. |
[64] | Vallerie, M. La pédologie. In Atlas régional Sud-Cameroun. ORSTOM éd. 1995, 10(11). |
[65] | Ajonina, G. N. Inventory and modelling mangrove forest stand dynamics following different levels of wood exploitation pressures in the Douala- Edea atlantic coast of Cameroon, Central Africa. PhD Thesis. Faculty of forest and environmental sciences, AlbertLudwigs- Universität Freiburg im Breisgau, Germany. 2008, 232 p. |
[66] | FAO, Food and Agricultural Organization. Mangrove Forest Management Guidelines. Rome (RO): FAO Forestry Paper. 1994. |
[67] | Efe, U. A. Mangrove growth dynamics and sediment relations in South Western Nigeria. JPSL. 2020 10(4), 688-698. |
[68] | Okanga-Guay, M., Ondo Assoumou, E., Akendengue Aken, I., Mpie Simba, C., Mombo, J. B. Suivi des changements spatiaux et environnementaux dans les mangroves de la province de l'Estuaire du Gabon. Conférence OSFACO: Des images satellites pour la gestion durable des territoires en Afrique, Cotonou, Bénin. ⟨hal-02189534⟩. 2019. |
[69] | Cintron, G., Schaeffer-Novelli, Y. Introduction a la Ecologia del Manglar. Rostlac, San Juan, Puerto Rico. 1983, 109 p. |
[70] | Wolanski, E., Gibbs, R. J., Spagnol, S., King, B., Brunskill, G. Inorganic sediment budget in the mangrove-fringed Fly River delta, Papua New Guinea. Mangroves Salt Marshes. 1998, 2(2), 85-98. |
[71] | Ferreira, T. O., Otero, X. L., De Souza, V. S., Vidal-Torrado, P., Macias, F., Firme, L. P. Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (Sao Paulo). J. Soils Sediments. 2010, 10(6), 995-1006. |
[72] | Lugo, A. E., Snedaker, S. C. The ecology of mangroves. Annual Review of Ecology and Systematics. 1986, 5, 39-64. |
[73] | Cintron, G., Lugo, A. E., Pool, D. J., Morris, G. Mangroves of and environments, in Puerto Rico and adjacent islands. Biotropica. 1978, 10(2), 110-121. |
[74] | Lugo, A. E., Brown, S., Brinson, M. M. Forested wetlands in freshwater and saltwater environments. Limnology and Oceanography. 1988, 33(4-2), 894-909. |
[75] | Barrêdo, J. F., Costa, M. L., Vilhena, M. P. S. P., Santos, J. T. Mineralogia egeoquímica de sedimentos de manguezais da costa amazônica: o exemplo do estuário do rio Marapanim (Pará). Revista Brasileira de Geociências, São Paulo. 2008, 38(1), 26-37. |
[76] | Rambok, E., Gandaseca, S., Ahmed, O. H., Majid, N. M. A. Comparison of selected soil chemical properties of two different mangrove forests in Sarawak. Am. J. Environ. Sci. 2010, 6(5), 438-441. |
[77] | Moreno, A. N. M., Calderon, J. H. M. Quantification of organic matter and physical-chemical characterization of mangrove soil at Hooker Bay, San Andres Island-Colombia. Proceedings of the Global Conference on Global Warming, Lisbon, Portugal. 2011, 7 p. |
[78] | Das, S., De, M., Ganguly, D., Maiti, T. K., Mukherjee, A., Jana, T. K., De, T. K. Depth integrated microbial community and physico-chemical properties in mangrove soil of Sundarban, India. Adv. Microbiol. 2012, 2, 234-240. |
[79] | Sabrina V. Evaluation de l’impact de l’aquaculture de crevettes sur les mangroves de nouvelle-caledonie. Zonéco. 2005, 30913, 125 p. |
[80] | Reeburgh, W. S. Rates of biogeochemical processes in anoxic sediments. Annual review of earth and planetary Sciences. 1983, 11, 269-298. |
[81] | Hussenot, J. Les systèmes intégrés en aquaculture marine: une solution durable pour un meilleur respect de l’environnement littoral. Centre de Recherche sur les Ecosystèmes Marins et Aquacoles, UMR CNRS-IFREMER. 2004, 44p. |
[82] | Hossain, M. D., Nuruddin, A. A. Soil and mangrove: A Review. J. Environ. Sci. Technol. 2016, 9(2), 198-207. |
[83] | Alongi, D. M. The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. Journal of Marine Resesearch. 1996, 54, 123–148. |
[84] | Alongi, D. M. Present state and future of the world’s mangrove forests Environmental Conservation. CAMBRIDGE university press. 2002, 29(03), 331-349. |
[85] | Virly, S. Atlas cartographique des mangroves de Nouvelle-Calédonie. Programme ZoNéCo. 2008, 207p. |
[86] | Testa, J. M., Kemp, W. M., Hopkinson, C. S., Smith, S. V. Ecosystem Metabolism. Estuarine ecology. 2012, 15, 381–416. |
[87] | Akhand, A., Chanda, A., Watanabe, K., Das, S., Tokoro, T., Hazra, S., Kuwae, T. Reduction in riverine freshwater supply changes inorganic and organic carbon dynamics and air-water CO2 fluxes in a tropical mangrove dominated estuary. Journal of Geophysical Research: Biogeosciences. 2021, 126(5), 22 p. |
[88] | Meyers, P. A. Organic Geochemical Proxies of Paleoceanographic, Paleolimnologic, and Paleoclimatic Processes. Organic Geochemistry. 1997, 27(5-6), |
[89] | Allotey, D. F. K., Asiamah, R. D., Dedzoe, C. D., Nyamekye, A. L. Physico-chemical properties of three salt-affected soils in the lower volta basin and management strategies for their sustainable utilization. West African Journal of Applied Ecology. 2008, 12(1), 14 p. |
[90] | Hazelton, P., Murphy, B. Interpreting soil test results: what to do all the numbers mean? CSIRO Publishing. Collingwood Victoria–Australia. 2007, 631(42), 169 p. ISBN 978 0 64309 225 9. Available: |
[91] | Hochard, S., Pringault, O., Pinazo, C., Bourgeois, S., Rochelle-Newall, E. Impact des apports anthropiques sur le fonctionnement biogéochimique et le rôle des sédiments du lagon de Nouvelle-Calédonie. Programme ZoNéCo. 2012, 41 p. |
[92] | Koch, M. S., Snedaker, S. C. Factors influencing Rhizophora mangle L seedling development in Everglades carbonate soils. Aquatic Botany. 1997, 59(1-2), 87-98. |
[93] |
Sterner, R. W., Elser, N. B. Carbone, azote et phosphore, stœchiométrie des poissons cyprinidés. Ecology. 2000, 81(1), 127-140.
https://doi.org/10.1890/0012-9658(2000)081[0127: CNAPSO]2.0.CO2 |
[94] | Anderson, D. M., Glibert, P. M., Burkholder, J. M. Harmful Algal Blooms and Eutrophication: Nutrient Sources, Composition, and Consequences. Estuaries. 2002, 25(4), 704-726. |
[95] | Oslisly, R. The history of human settlement in the middle Ogooué valley (Gabon): implications for the environment. In: Weber, W, White, L. J. T, Vedder, A, Naugthon-Treves, L, editors. African Rain Forest Ecology and Conservation. New Haven: Yale University Press. 2001, 101–118. Google Scholar. |
[96] | FAO, The world’s mangroves, 1980- 2005. FAO Forestry Paper, Rome. 2007, 153, 89 p. |
[97] | Holmer, M., Andersen, F., Holmboe, N., Kristensen, E., Thongtham, N. Transformation and exchange processes in the Brangrong mangrove forest-seagrass bed system, Thailand. Seasonal and spatial variations in benthic metabolism and sulfur biogeochemistry. Aquatic Microbial Ecology. 1999, 20, 203-212. |
[98] | FAO, Relevance of mangrove forests to African fisheries, Wildlife and Water resources. Food and Agriculture Organization, regional office for Africa. Nature and Faune Magazine. 2009, 24(1), 91 p. |
[99] | Ranaivoson, J. Etude du schéma d’aménagement de l’aquaculture de crevettes à Madagascar. Phase I: Cas des zones 1, 4. Madagascar, Ministère de la pêche et des ressources halieutiques. Rapport de l’Union européenne, Paris. 2001, 78 p. |
[100] | Tazo Fopi, R. D., Ngankam Tchamba, M., Nwutih Ajonina G. Caractérisation physico-chimique et dendrométrie dans les traitements de régénération de mangrove de l’Estuaire du Cameroun. Int. J. Biol. Chem. Sci. 2021, 15(6), 2701-2714. ISSN 1997-342X (Online), ISSN 1991-8631 (Print). |
[101] | Dahdouh-Guebas, F. World Atlas of Mangroves: Mark Spalding, Mami Kainuma and Lorna Collins (eds). Human Ecology. 2011 39(1), 107–109. |
[102] | Andrade, K. V. S., Holanda, F. S. R., Santos, T. O., Santana, M. B. S., Araújo Filho, R. N. Mangrove Soil in Physiographic Zones in the Sao Francisco River Estuary. Floresta e Ambiente. 2018, 25(2), 9 p. e20160638. |
APA Style
Mama, A. C., Chougong, D. T., Dingong, G. T. A., Bessa, A. Z. E., Dicka, E. H., et al. (2024). Dendrometrical Structure and Physicochemical Analysis of Mangrove Sediments from the Nyong River Estuary (Cameroon, Atlantic Coast). Journal of Water Resources and Ocean Science, 13(2), 23-41. https://doi.org/10.11648/j.wros.20241302.11
ACS Style
Mama, A. C.; Chougong, D. T.; Dingong, G. T. A.; Bessa, A. Z. E.; Dicka, E. H., et al. Dendrometrical Structure and Physicochemical Analysis of Mangrove Sediments from the Nyong River Estuary (Cameroon, Atlantic Coast). J. Water Resour. Ocean Sci. 2024, 13(2), 23-41. doi: 10.11648/j.wros.20241302.11
AMA Style
Mama AC, Chougong DT, Dingong GTA, Bessa AZE, Dicka EH, et al. Dendrometrical Structure and Physicochemical Analysis of Mangrove Sediments from the Nyong River Estuary (Cameroon, Atlantic Coast). J Water Resour Ocean Sci. 2024;13(2):23-41. doi: 10.11648/j.wros.20241302.11
@article{10.11648/j.wros.20241302.11, author = {Anselme Crépin Mama and Durane Tchatchouang Chougong and Ginette Thérèse Atoukoh Dingong and Armel Zacharie Ekoa Bessa and Emmanuel Henock Dicka and Gordon Nwutih Ajonina and Jules Rémi Ngoupayou Ndam}, title = {Dendrometrical Structure and Physicochemical Analysis of Mangrove Sediments from the Nyong River Estuary (Cameroon, Atlantic Coast) }, journal = {Journal of Water Resources and Ocean Science}, volume = {13}, number = {2}, pages = {23-41}, doi = {10.11648/j.wros.20241302.11}, url = {https://doi.org/10.11648/j.wros.20241302.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wros.20241302.11}, abstract = {Mangrove estuaries are not immune to the threats posed by climate and anthropogenic constraints on aquatic environments. In the Nyong River estuary, mangrove ecotone has capital importance for biodiversity conservation due to its localization in the Douala-Edéa protected area. For this study, seven quadrats were delimited in aim to evaluate mangrove structure and assessed his interplay with sediment and water physicochemical characteristics. The study revealed a total of 120 individuals of 4 regularly encountered species over a distance of 14 km: Rhizophora racemosa, Avicennia germinans, Rhizophora harrisonii and Phoenix reclinata palms. The marshy soils under the mangrove have Total Nitrogen percentages varying between 0.04 and 0.68%. Total Organic Carbon (from 2.20 to 8.61%) and Total Organic Matter (from 3.66 to 14.64%) contents have a similar pattern. The ratios of Carbon and Nitrogen (C/N) reflect the presence of organic matter and plant debris over a large proportion of the estuary. The ratio of Nitrogen and Phosphate (N/P) reflects the low availability of nitrogen in relation to phosphorus. The cation elements evolve on average in the order Ca2+ ˃Mg2+ ˃Na+ ˃K+. This study provides information that would help explore linkages for future research on biogeochemical balance in mangrove sediment and their implementation. }, year = {2024} }
TY - JOUR T1 - Dendrometrical Structure and Physicochemical Analysis of Mangrove Sediments from the Nyong River Estuary (Cameroon, Atlantic Coast) AU - Anselme Crépin Mama AU - Durane Tchatchouang Chougong AU - Ginette Thérèse Atoukoh Dingong AU - Armel Zacharie Ekoa Bessa AU - Emmanuel Henock Dicka AU - Gordon Nwutih Ajonina AU - Jules Rémi Ngoupayou Ndam Y1 - 2024/04/29 PY - 2024 N1 - https://doi.org/10.11648/j.wros.20241302.11 DO - 10.11648/j.wros.20241302.11 T2 - Journal of Water Resources and Ocean Science JF - Journal of Water Resources and Ocean Science JO - Journal of Water Resources and Ocean Science SP - 23 EP - 41 PB - Science Publishing Group SN - 2328-7993 UR - https://doi.org/10.11648/j.wros.20241302.11 AB - Mangrove estuaries are not immune to the threats posed by climate and anthropogenic constraints on aquatic environments. In the Nyong River estuary, mangrove ecotone has capital importance for biodiversity conservation due to its localization in the Douala-Edéa protected area. For this study, seven quadrats were delimited in aim to evaluate mangrove structure and assessed his interplay with sediment and water physicochemical characteristics. The study revealed a total of 120 individuals of 4 regularly encountered species over a distance of 14 km: Rhizophora racemosa, Avicennia germinans, Rhizophora harrisonii and Phoenix reclinata palms. The marshy soils under the mangrove have Total Nitrogen percentages varying between 0.04 and 0.68%. Total Organic Carbon (from 2.20 to 8.61%) and Total Organic Matter (from 3.66 to 14.64%) contents have a similar pattern. The ratios of Carbon and Nitrogen (C/N) reflect the presence of organic matter and plant debris over a large proportion of the estuary. The ratio of Nitrogen and Phosphate (N/P) reflects the low availability of nitrogen in relation to phosphorus. The cation elements evolve on average in the order Ca2+ ˃Mg2+ ˃Na+ ˃K+. This study provides information that would help explore linkages for future research on biogeochemical balance in mangrove sediment and their implementation. VL - 13 IS - 2 ER -