| Peer-Reviewed

Study of Thermoelectric Properties of Nickel Germano-silicides Obtained on the Basis of Bulk Solid Solutions of Silicon-germanium

Received: 15 January 2022     Accepted: 4 February 2022     Published: 9 April 2022
Views:       Downloads:
Abstract

The effect of thermal annealing in vacuum (in the temperature range of 200-900°C) on the electrical conductivity of the structure of a nickel film - a single-crystal layer of germanosilicide has been studied. Nickel films 15 nm thick were sputtered by adsorption sputtering in vacuum. The possibility of forming conductive layers with a surface resistance of about 4.9 mOhm * cm and on their basis bulk Si1-xGex single crystals with a thickness of 4 μm by mechanical processing and chemical etching, as well as deposition in a vacuum environment of 10-5 -10-7 Torr. The surface resistance of the film and the surface morphology (and chipping) were studied, the phase state of nickel germanium silicide films was studied by X-ray diffraction, the study of thermoelectric properties and the comparison of Ni-SiRH and Ni-Si1-x-Gex samples as thermoelectric materials. The thermopower values were obtained experimentally in the temperature range 36-107°C, and the role of the nanoscale film and substrate in the formation of the thermoelectric effect was discussed. Increasing the thermoelectric figure of merit due to nickel with decreasing surface resistance and due to phonon scattering on surfaces and heterostructures such as nickel germanosilicide, superlattices and layer/substrate systems. The best quality factor ZT = 1.98 ± 0.05 was obtained for Ni-(Si0.95Ge0.05) at T = 300K. The maximum difference with a value of ΔTmax = 326.84K.

Published in American Journal of Physics and Applications (Volume 10, Issue 2)
DOI 10.11648/j.ajpa.20221002.14
Page(s) 45-50
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Thermoelectricity, Solid Solution, Alloying, Clusters, Solid-State Reactions, Nickel Silicide, Germane-Nickel Silicide, Nanoclusters, Agglomeration

References
[1] T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge «Quantum Dot Superlattice Thermoelectric Materials and Devices» 27 SEPTEMBER 2002 VOL 297 SCIENCE www.sciencemag.org
[2] © И. Г. Атабаев, М. У. Хажиев, Н. А. Матчанов, Т. М. Салиев, К. А. Бобожонов «Влияние поверхностных химических обработок на свойства контактов Ti−p-Si1−xGex и Ni−p-Si1−xGex». Физика и техника полупроводников, 2010, том 44, вып. 12. [I. G. Atabaev, M. U. Khazhiev, N. A. Matchanov, T. M. Saliev, and K. A. Bobojonov “Influence of surface chemical treatments on the properties of Ti–p-Si1–xGex and Ni contacts −p-Si1−xGex". Physics and technology of semiconductors, 2010, volume 44, no. 12.]
[3] V. Carron, J. M. Hartmann, T. Farjot, P. Holliger, F. Laugier, G. Rolland «Growth and morphological stability of nickel germano-silicide on strained Si1-xGex (x=0.1 to 0.25) under rapid thermal annealing» Abs. 1392, 206th Meeting, © 2004 The Electrochemical Society, Inc.
[4] Asghar Jamshidi Zavaraki, Henry H Radamson, Adrin Noroozi, Dongping Wu. Characterization of Ni (Si, Ge) films on epitaxial SiGe (100) formed by microwave annealing. Article in Applied Physics Letters • August 2012 DOI: 10.1063/1.4748111.
[5] Thermal reaction of nickel and Si0.75Ge0.25 alloy. K. L. Pey, W. K. Choi, S. Chattopadhyay, H. B. Zhao, E. A. Fitzgerald. Citation: J. Vac. Sci. Technol. A 20, 1903 (2002); doi: 10.1116/1.1507339. Published by the AVS: Science & Technology of Materials, Interfaces, and Processing.
[6] A. Ioffe. Sci. Am. 199, 31 (1958).
[7] L. E. Bell, Science 321, 1457 (2008).
[8] M. S. Saidov, I. G. Atabaev, A. Yusupov, N. A. Matehanov, E. N. Bakhranov "Thermoelectric properties of polycrystalline Si0.4Ge0.6 alloy ", Proceeding of European.
[9] M. S. Saidov, I. G. Atabaev, N. A. Matehanov, E. N. Bakhranov "Investigation of thermoelectric properties of intrinsic polycrystalline Si0.4Ge0.6 alloy", Applied Solar Energy (Geliotechnika), I, pp. 36-42 (2002).
[10] Evaluation Of Ni (Si1-xGex) And Pt (Si1-xGex) Contact Resistance For FD-SOI PMOS Metallic Source And Drain. E. Bourjota, F. Nemouchib, V. Carronb, Y. Moranda, S. Bernasconia, M. Vinetb, J. F. Damlencourtb, F. Allainb, O. Cuetob, D. Lafondb.
[11] Современные решения термоэлектрического охлаждения для радиоэлектронной, медицинской, промышленной и бытовой техники. Силовая электроника, Петр Шостаковский [Modern solutions of thermoelectric cooling for radio-electronic, medical, industrial and household appliances. Power electronics, Pyotr Shostakovsky]
[12] В. К. Зайцев, Е. Н. Никитин, Э. Н. Ткаленко. ФТТ, 11, 3584 (1969). [V. K. Zaitsev, E. N. Nikitin, E. N. Tkalenko. FTT, 11, 3584 (1969).]
[13] Тонкие пленки взаимная диффузия и реакции. М:-Мир 1982 г. 586 с. [Thin films mutual diffusion and reactions. M:-Mir 1982. 586 p.]
[14] Аморфные и микрокристаллические полупроводники. Сборник трудов Международной конференции. 19-21 ноября 2018 года. Санкт-Петербург. [Amorphous and microcrystalline semiconductors. Proceedings of the International Conference. November 19-21, 2018. Saint Petersburg.]
[15] Аморфные полупроводники в микро- и наноэлектронике. А. И. Попов ISSN 1995-4565. Приложение к журналу «Вестник РГРТУ». № 4 Рязань, 2009. [Amorphous semiconductors in micro- and nanoelectronics. A. I. Popov ISSN 1995-4565. Supplement to the journal "Vestnik RGRTU". No. 4 Ryazan, 2009.]
[16] Enhanced Morphological and Thermal Stabilities of Nickel Germanide with an Ultrathin Tantalum Layer Studied by Ex Situ and In Situ Transmission Electron Microscopy Jae-Wook Lee, 1 Hyung-Kyu Kim, 1 Jee-Hwan Bae, Min-Ho Park, Hyoungsub Kim, Jiho Ryu, and Cheol-Woong Yang1, Microsc. Microanal. 19, S5, 114–118, 2013.
[17] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, Z. F. Ren. Appl. Phys. Lett. 93, 193 121 (2008).
[18] New Directions for Low-Dimensional Thermoelectric Materials** By Mildred S. Dresselhaus,* Gang Chen, Ming Y. Tang, Ronggui Yang, Hohyun Lee, Dezhi Wang, Zhifeng Ren, Jean-Pierre Fleurial, and Pawan Gogna. Adv. Mater. 2007, 19, 1043–1053 ©2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. www.advmat.de
[19] S.-L. Zhang, Microelectronic Engineering, 70, 174-185 (2003).
[20] K. Pey, et al., J. Vac. Sci. & Techn. A-vacuum Surf. and Films, 20, 1903-1910 (2002).
[21] Оптимальные условия легирования никелем для повышения эффективности кремниевых фотоэлементов. © М. К. Бахадырханов, З. Т. Кенжаев. Журнал технической физики, 2021, том 91, вып. 6. [Optimal nickel doping conditions for increasing the efficiency of silicon photocells. © M. K. Bakhadyrkhanov and Z. T. Kenzhaev. Journal of Technical Physics, 2021, volume 91, no. 6.]
[22] Wei Tang, Binh-Minh Nguyen, Renjie Chen and Shadi A Dayeh «Solid-state reaction of nickel silicide and germanide contacts to semiconductor nanochannels» Semicond. Sci. Technol. 29 (2014) 054004 (18pp) doi: 10.1088/0268-1242/29/5/054004.
[23] Thermoelectrics Handbook Macro to Nano by Rowe, D. M. (z-lib.org)
[24] Paolo Mele Dario, Narducci Michihiro, Ohta Kaniskha Biswas Juan Morante Shrikant Saini, Tamio Endo Editors Thermoelectric Thin Films Mate rials and Devices.
[25] Т. Н. Патрушева, С. А. Подорожняк, Г. Н. Шелованова Сибирский федеральный университет, Россия 660041, Красноярск, пр. Свободный, 79 Термоэлектрическая добротность в низкоразмерной полупроводниковой среде [T. N. Patrusheva, S. A. Podorozhnyak, G. N. Shelovanova Siberian Federal University, 79, Svobodny Ave., Krasnoyarsk, 660041, Russia Thermoelectric figure of merit in a low-dimensional semiconductor medium] Journal of Siberian Federal University. Engineering & Technologies 6 (2013 6) 657-664. УДК [UDC] 621.362.
[26] Low Thermal Conductivity of Bulk Amorphous Si1-xGex Containing Nano-Sized Crystalline Particles Synthesized. O. Muthusamy, Sh. Nishino, S. Ghodke, M. Inukai, R. Sobota, M. Adachi, M. Kiyama, Y. Yamamoto, T. Takeuchi, H. Santhanakrishnan, H. Ikeda, and Y. Hayakawa. Journal of ELECTRONIC MATERIALS https://doi.org/10.1007/s11664-018-6103-2 2018 The Minerals, Metals & Materials Society.
[27] Влияние химических обработок поверхности на свойства Ti-p-Si1-x Gex и Ni-p-Si1-x Gex структур. М. У. Хажиев, К. А. Бобожонов, Х. Н. Жураев, Ўзбекистоннинг инновацион тараққиёти – ёшлар нигоҳида [Influence of chemical surface treatments on the properties of Ti-p-Si1-x Gex and Ni-p-Si1-x Gex structures. M. U. Khazhiev, K. A. Bobojonov, Kh. N. Zhuraev. Innovative development of Uzbekistan - in the eyes of young people]
[28] N. A. Matchanov, K. A. Bobojonov, D. Sh. Saidov, Sh. K. Abdusharipov, Study of thermoelectric properties of nickel germano-silicides obtained on the basis of bulk solid solutions of silicon-germanium. Republican scientific conference “Actual issues of mathematics and information sistems” Urganch, 2021y 12-13. p. 54-62.
[29] I. G. Atabaev, N. A. Matchanov, E. N. Bakhranov, and M. S. Saidov. Preparation and Thermoelectric Properties of Polycrystalline Si0.4Ge0.6 Inorganic Materials, Vol. 41, No. 10, 2005, pp. 1033–1038. Translated from Neorganicheskie Materialy, Vol. 41, No. 10, 2005, pp. 1176–1181. Original Russian Text Copyright © 2005 by Atabaev, Matchanov, Bakhranov, Saidov.
[30] Ya-dong Xu, Gui-ying Xu and Chang-chun Ge. Improvement in thermoelectric properties of n-type Si95Ge5 alloys by heavy multi-dopants. www.elsevier.com/locate/scriptamat.
[31] Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites. Bo Yu, Mona Zebarjadi, Hui Wang, Kevin Lukas, Hengzhi Wang, Dezhi Wang, Cyril Opeil, Mildred Dresselhaus, Gang Chen, and Zhifeng Ren. pubs.acs.org/NanoLett.
[32] Giri Joshi, Hohyun Lee, Yucheng Lan, Xiaowei Wang, Gaohua Zhu, Dezhi Wang, Ryan W. Gould, Diana C. Cuff, Ming Y. Tang, Mildred S. Dresselhaus, Gang Chen, and Zhifeng Ren. Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys, pubs.acs.org/NanoLett.
Cite This Article
  • APA Style

    Nuriddin Azadovich Matchanov, Komiljon Abdusharipovich Bobojonov, Dilmurad Shamuradovich Saidov, Shokhzod Komiljonovich Abdusharipov, Alisher Erkaboevich Rajabov. (2022). Study of Thermoelectric Properties of Nickel Germano-silicides Obtained on the Basis of Bulk Solid Solutions of Silicon-germanium. American Journal of Physics and Applications, 10(2), 45-50. https://doi.org/10.11648/j.ajpa.20221002.14

    Copy | Download

    ACS Style

    Nuriddin Azadovich Matchanov; Komiljon Abdusharipovich Bobojonov; Dilmurad Shamuradovich Saidov; Shokhzod Komiljonovich Abdusharipov; Alisher Erkaboevich Rajabov. Study of Thermoelectric Properties of Nickel Germano-silicides Obtained on the Basis of Bulk Solid Solutions of Silicon-germanium. Am. J. Phys. Appl. 2022, 10(2), 45-50. doi: 10.11648/j.ajpa.20221002.14

    Copy | Download

    AMA Style

    Nuriddin Azadovich Matchanov, Komiljon Abdusharipovich Bobojonov, Dilmurad Shamuradovich Saidov, Shokhzod Komiljonovich Abdusharipov, Alisher Erkaboevich Rajabov. Study of Thermoelectric Properties of Nickel Germano-silicides Obtained on the Basis of Bulk Solid Solutions of Silicon-germanium. Am J Phys Appl. 2022;10(2):45-50. doi: 10.11648/j.ajpa.20221002.14

    Copy | Download

  • @article{10.11648/j.ajpa.20221002.14,
      author = {Nuriddin Azadovich Matchanov and Komiljon Abdusharipovich Bobojonov and Dilmurad Shamuradovich Saidov and Shokhzod Komiljonovich Abdusharipov and Alisher Erkaboevich Rajabov},
      title = {Study of Thermoelectric Properties of Nickel Germano-silicides Obtained on the Basis of Bulk Solid Solutions of Silicon-germanium},
      journal = {American Journal of Physics and Applications},
      volume = {10},
      number = {2},
      pages = {45-50},
      doi = {10.11648/j.ajpa.20221002.14},
      url = {https://doi.org/10.11648/j.ajpa.20221002.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20221002.14},
      abstract = {The effect of thermal annealing in vacuum (in the temperature range of 200-900°C) on the electrical conductivity of the structure of a nickel film - a single-crystal layer of germanosilicide has been studied. Nickel films 15 nm thick were sputtered by adsorption sputtering in vacuum. The possibility of forming conductive layers with a surface resistance of about 4.9 mOhm * cm and on their basis bulk Si1-xGex single crystals with a thickness of 4 μm by mechanical processing and chemical etching, as well as deposition in a vacuum environment of 10-5 -10-7 Torr. The surface resistance of the film and the surface morphology (and chipping) were studied, the phase state of nickel germanium silicide films was studied by X-ray diffraction, the study of thermoelectric properties and the comparison of Ni-SiRH and Ni-Si1-x-Gex samples as thermoelectric materials. The thermopower values were obtained experimentally in the temperature range 36-107°C, and the role of the nanoscale film and substrate in the formation of the thermoelectric effect was discussed. Increasing the thermoelectric figure of merit due to nickel with decreasing surface resistance and due to phonon scattering on surfaces and heterostructures such as nickel germanosilicide, superlattices and layer/substrate systems. The best quality factor ZT = 1.98 ± 0.05 was obtained for Ni-(Si0.95Ge0.05) at T = 300K. The maximum difference with a value of ΔTmax = 326.84K.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Study of Thermoelectric Properties of Nickel Germano-silicides Obtained on the Basis of Bulk Solid Solutions of Silicon-germanium
    AU  - Nuriddin Azadovich Matchanov
    AU  - Komiljon Abdusharipovich Bobojonov
    AU  - Dilmurad Shamuradovich Saidov
    AU  - Shokhzod Komiljonovich Abdusharipov
    AU  - Alisher Erkaboevich Rajabov
    Y1  - 2022/04/09
    PY  - 2022
    N1  - https://doi.org/10.11648/j.ajpa.20221002.14
    DO  - 10.11648/j.ajpa.20221002.14
    T2  - American Journal of Physics and Applications
    JF  - American Journal of Physics and Applications
    JO  - American Journal of Physics and Applications
    SP  - 45
    EP  - 50
    PB  - Science Publishing Group
    SN  - 2330-4308
    UR  - https://doi.org/10.11648/j.ajpa.20221002.14
    AB  - The effect of thermal annealing in vacuum (in the temperature range of 200-900°C) on the electrical conductivity of the structure of a nickel film - a single-crystal layer of germanosilicide has been studied. Nickel films 15 nm thick were sputtered by adsorption sputtering in vacuum. The possibility of forming conductive layers with a surface resistance of about 4.9 mOhm * cm and on their basis bulk Si1-xGex single crystals with a thickness of 4 μm by mechanical processing and chemical etching, as well as deposition in a vacuum environment of 10-5 -10-7 Torr. The surface resistance of the film and the surface morphology (and chipping) were studied, the phase state of nickel germanium silicide films was studied by X-ray diffraction, the study of thermoelectric properties and the comparison of Ni-SiRH and Ni-Si1-x-Gex samples as thermoelectric materials. The thermopower values were obtained experimentally in the temperature range 36-107°C, and the role of the nanoscale film and substrate in the formation of the thermoelectric effect was discussed. Increasing the thermoelectric figure of merit due to nickel with decreasing surface resistance and due to phonon scattering on surfaces and heterostructures such as nickel germanosilicide, superlattices and layer/substrate systems. The best quality factor ZT = 1.98 ± 0.05 was obtained for Ni-(Si0.95Ge0.05) at T = 300K. The maximum difference with a value of ΔTmax = 326.84K.
    VL  - 10
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • International Institute of Solar Energy, 2b House, Tashkent, Uzbekistan

  • Urgench Branch, Tashkent University of Information Technologies Named After Muhammad al-Khwarizmi, Urgench, Uzbekistan

  • Urgench Branch, Tashkent University of Information Technologies Named After Muhammad al-Khwarizmi, Urgench, Uzbekistan

  • Urgench Branch, Tashkent University of Information Technologies Named After Muhammad al-Khwarizmi, Urgench, Uzbekistan

  • Urgench Branch, Tashkent University of Information Technologies Named After Muhammad al-Khwarizmi, Urgench, Uzbekistan

  • Sections