A system of ultracold alkali (6Li, 40K) and alkaline-earth atoms (87Sr) will investigate the quantum simulation properties. Feshbach resonance (FR) is an essential tool for changing the interaction between particles by changing the magnetic field strength between the atoms. FR are of two kinds magnetic Feshbach resonance (MFR) and orbital Feshbach resonance (OFR), dealing with one band and two-band physics, respectively. In orbital Feshbach resonance, the energy difference between open and closed channels is in the range of Fermi energy or even smaller, reducing to zero or at no magnetic field. The atomic structural analysis of one valence electron in the outermost orbit for alkali atoms has widely explored the superfluidity and single-particle phenomena. The system of alkaline-earth atoms provides an excellent opportunity for the investigation of quantum simulation and quantum many-body matters such as the simulation of synthetic gauge field, Kondo physics, and SU(N) physics. This work studies spin-orbit coupled (SOC) physics in alkaline-earth (AE) atoms like 173Yb in two different electronic and nuclear hyperfine states. We discuss the interaction between particles in the hyperfine states by varying the interatomic distance. Here we will discuss short-range potential (in singlet and triplet channels at finite field strength) and long-range potential (open and closed channels for zero-field strength). We discuss the single-particle density-of-states (DOS) in the open and closed channel above superfluid phase transition temperature to study the normal-state properties of two particular nuclear hyperfine states.
Published in | American Journal of Physics and Applications (Volume 10, Issue 2) |
DOI | 10.11648/j.ajpa.20221002.13 |
Page(s) | 38-44 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Ultracold Atoms, Feshbach Resonance, Density-of-States, Ytterbium Atom, Superfluid Phase Transition Temperature
[1] | Goldman, N., Budich, J. C., & Zoller, P. (2016). Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639. DOI: https://doi.org/10.1038/nphys3803. |
[2] | Gross, C., & Bloch, I. (2017). Quantum simulations with ultracold atoms in optical lattices. Science 357, 995. DOI: 10.1126/science.aal3837. |
[3] | Bloch, I., Dalibard, J. & Nascimbène, S. (2012). Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267. DOI: 10.1038/nphys2259. |
[4] | Bloch, I., Dalibard, J. & Zwerger, W. (2008). Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885. DOI: 10.1103/PhysRevLett.115.135301. |
[5] | Regal, C. A., Greiner, M., & Jin, D. S. (2004). Lifetime of Molecule-Atom Mixtures near a Feshbach Resonance in 40K. Phys. Rev. Lett. 92, 083201. DOI: 10.1103/PhysRevLett.92.083201. |
[6] | Dieckmann, K., Stan, C. A., Gupta, S., Hadzibabic, Z., C. Schunck, C. H., & Ketterle, W. (2002). Decay of an Ultracold Fermionic Lithium Gas near a Feshbach Resonance. Phys. Rev. Lett. 89, 203201. DOI: 10.1103/PhysRevLett.89.203201. |
[7] | Zhang, R., Cheng, Y., Zhai, H., & Zhang, P. (2015). Orbital Feshbach Resonance in Alkali-Earth Atoms. Phys. Rev. Lett. 115, 135301. DOI: 10.1103/PhysRevLett.115.135301. |
[8] | Pagano, G., Mancini, M., Cappellini, G., Livi, L., Sias, C., Catani, J., Inguscio, M., and Fallani, L. (2015). Strongly Interacting Gas of Two-Electron Fermions at an Orbital Feshbach Resonance. Phys. Rev. Lett. 115, 265301. DOI: 10.1103/PhysRevLett.115.265301. |
[9] | Höfer, M., Riegger, L., Scazza, F., Hofrichter, C., Fernandes, D. R., Parish, M. M., Levinsen, J., Bloch, I., & Fölling, S. (2015). Observation of an Orbital Interaction-Induced Feshbach Resonance in 173Yb. Phys. Rev. Lett. 115, 265302. DOI: doi: 10.1103/PhysRevLett.115.265302. |
[10] | Xu, J., Zhang, R., Cheng, Y., Zhang, P., Qi, R., Zhai, H.(2016). Phys. Rev. A 94, 033609. Reaching a Fermi-superfluid state near an orbital Feshbach resonance. DOI: 10.1103/PhysRevA.94.033609. |
[11] | Zhang, X., Bishof, M., Bromley, S. L., Kraus, C. V., Safronova, M. S., Zoller. P., Rey, A. M. & Ye, J. (2014). Science Vol 345, Issue 6203. DOI: 10.1126/science.1254978. |
[12] | Zhang, R., Cheng, Y., Zhang, P., & Zhai, H. (2019). Controlling the interaction of ultracold alkaline-earth atoms. Nature Reviews Physics, (2020) 2, 213-220. DOI: 10.1038/s42254-020-0157-9. |
[13] | Blagoev, K. B., & Komarovskii, V. A. (1994). Lifetimes of Levels of Neutral and Singly Ionized Lanthanide Atoms. Atomic Data and Nuclear Data Tables, 56, 1. DOI: 10.1006/adnd.1994.1001. |
[14] | Enomoto, K., Kasa, K., Kitagawa, M., & Takahashi, Y. (2008). Optical Feshbach Resonance Using the Intercombination Transition. Phys. Rev. Lett. 101, 203201. DOI: 10.1103/PhysRevLett.101.203201. |
[15] | Gorshkov, A. V., Hermele, M., Gurarie. V., Xu, C., Julienne, P. S., Ye, J., Zoller, P., Demler, E., Lukin, M. D. & Rey, A. M. (2010). Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nature Physics volume 6, 289–295. DOI: 10.1038/nphys1535. |
[16] | Bauer, D. M., Lettner, M., Rempe, V. -C., Rempe, G., & Dürr, S. (2009). Control of a magnetic Feshbach resonance with laser light. Nature Physics volume 5, 339–342. DOI: 10.1038/nphys1232. |
[17] | Zhang., Y. -C., Ding, S., & Zhang, S. (2017). Collective modes in a two-band superfluid of ultracold alkaline-earth-metal atoms close to an orbital Feshbach resonance. Phys. Rev. A 95, 041603 (R). DOI: 10.1103/PhysRevA.95.041603. |
[18] | Mondal, S., Inotani, D., & Ohashi, Y. (2017). Closed-channel contribution in the BCS-BEC crossover regime of an ultracold Fermi gas with an orbital Feshbach resonance. J. Phys.: Conf. Ser. 969 012017. DOI: 0.1088/1742-6596/969/1/012017. |
[19] | Mondal, S., Inotani, D., & Ohashi, Y. (2018). Single-particle Excitations and Strong Coupling Effects in the BCS–BEC Crossover Regime of a Rare-Earth Fermi Gas with an Orbital Feshbach Resonance. DOI: 10.7566/JPSJ.87.084302. |
[20] | Mondal, S., Inotani, D., & Ohashi, Y. (2018). Photoemission Spectrum in the BCS–BEC Crossover Regime of a Rare-Earth Fermi Gas with an Orbital Feshbach Resonance. DOI: 10.7566/JPSJ.87.094301. |
[21] | Deng, T. S., Lu, Z.-C., Shi, Y. -R., Chen, J.-G., Zhang, W., & Yi, W. (2018). Repulsive polarons in alkaline-earth-metal-like atoms across an orbital Feshbach resonance. DOI: 10.1103/PhysRevA.97.013635. |
[22] | Kamihori, T., Kagamihara, D., & Ohashi, Y. (2021). Superfluid properties of an ultracold Fermi gas with an orbital Feshbach resonance in the BCS-BEC crossover region. Phys. Rev. A. 103, 053319. DOI: 10.1103/PhysRevA.103.053319. |
[23] | Cheng, Y., Zhang, R., & Zhang, P. (2017). Quantum defect theory for the orbital Feshbach resonance. Phys. Rev. A. 95, 013624 (2017). DOI: 10.1103/PhysRevA.95.013624. |
[24] | Tsuchiya, S., Watanabe, R., & Ohashi, Y. (2009). Single-particle properties and pseudogap effects in the BCS-BEC crossover regime of an ultracold Fermi gas above Tc. Phys. Rev. A 80, 033613. DOI: 10.1103/PhysRevA.80.033613. |
[25] | Zhang, R., Zhang, D., Cheng, Y., Chen, W., Zhang, P., & Zhai, H. (2016). Kondo effect in alkaline-earth-metal atomic gases with confinement-induced resonances. Phys. Rev. A 93, 043601. DOI: 10.1103/PhysRevA.93.043601. |
[26] | Bauer, J., Demler, E., & Salomon, C. (2015). Employing confinement induced resonances to realize Kondo physics with ultracold atoms. Journal of Physics: Conference Series 592 012151. DOI: 10.1088/1742-6596/592/1/012151. |
[27] | Madjarov, I. S., Covey, J. P., Shaw, A. L., Choi, J., Kale, A., Cooper, A., Pichler, H., Schkolnik, V., Williams, J. R., & Endres, M. (2020). High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nature Physics volume 16, 857–861. DOI: 10.1038/s41567-020-0903-z. |
[28] | Nakagawa, M., Kawakami, N. (2015). Laser-Induced Kondo Effect in Ultracold Alkaline-Earth Fermions. Phys. Rev. Lett. 115, 135301. DOI: 10.1103/PhysRevLett.115.165303. |
[29] | Ciurylo, R., Tiesienga, E., & Julienne, P. S. (2005). Optical tuning of the scattering length of cold alkaline-earth-metal atoms. Phys. Rev. A 71, 030701 (R) 2005. DOI: 10.1103/PhysRevA.71.030701. |
[30] | Tey, M. K., Stellmer, S., Grimm, R., & Schreck, F. (2010). Double-degenerate Bose-Fermi mixture of strontium. Phys. Rev. A 82, 011608 (R). doi: 10.1103/PhysRevA.82.011608. |
[31] | Takasu, Y., Honda, K., Komori, K., Kuwamoto, T., Kumakura, Takahashi, M. Y., & Yabuzaki, T. (2004). High-Density Trapping of Cold Ytterbium Atoms by an Optical Dipole Force. Phys. Rev. Lett. 93, 123202. DOI: 10.1103/PhysRevLett.93.123202. |
[32] | Takasu, K., Honda, K., Komori, K., Kuwamoto, T., Kumakura, M., Takahashi, Y., and Yabuzaki, T. (2003). High-Density Trapping of Cold Ytterbium Atoms by an Optical Dipole Force. Phys. Rev. Lett. 90, 023003. DOI: 10.1103/PhysRevLett.90.023003. |
[33] | Fukuhara, T., Takasu, Y., Kumarakura, M., & Takahashi, Y. (2007). Degenerate Fermi Gases of Ytterbium. Phys. Rev. Lett. 98, 030401. DOI: 10.1103/PhysRevLett.98.030401. |
[34] | Fukuhara, T., Sugawa, S., & Takahashi, Y. (2007). Bose-Einstein condensation of an ytterbium isotope. Phys. Rev. A 76, 051604 (R). DOI: 10.1103/PhysRevA.76.051604. |
[35] | Takasu, Y., & Takahashi, Y. (2009). Quantum Degenerate Gases of Ytterbium Atoms. J. Phys. Soc. Jpn. 78, 012001. DOI: 10.1143/JPSJ.78.012001. |
[36] | Enomoto, K., Takabatake, R., Suzuki, T., Takasu, Y., Takahashi, Y., & Baba, M. (2021). Free-bound excitation and predissociation of ytterbium dimers near the 1S0−1P1 atomic transition. DOI: 10.1103/PhysRevA.104.013118. |
APA Style
Soumita Mondal. (2022). Dependence of Orbital Feshbach Resonance in 173Yb on the Nuclear Hyperfine States. American Journal of Physics and Applications, 10(2), 38-44. https://doi.org/10.11648/j.ajpa.20221002.13
ACS Style
Soumita Mondal. Dependence of Orbital Feshbach Resonance in 173Yb on the Nuclear Hyperfine States. Am. J. Phys. Appl. 2022, 10(2), 38-44. doi: 10.11648/j.ajpa.20221002.13
@article{10.11648/j.ajpa.20221002.13, author = {Soumita Mondal}, title = {Dependence of Orbital Feshbach Resonance in 173Yb on the Nuclear Hyperfine States}, journal = {American Journal of Physics and Applications}, volume = {10}, number = {2}, pages = {38-44}, doi = {10.11648/j.ajpa.20221002.13}, url = {https://doi.org/10.11648/j.ajpa.20221002.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20221002.13}, abstract = {A system of ultracold alkali (6Li, 40K) and alkaline-earth atoms (87Sr) will investigate the quantum simulation properties. Feshbach resonance (FR) is an essential tool for changing the interaction between particles by changing the magnetic field strength between the atoms. FR are of two kinds magnetic Feshbach resonance (MFR) and orbital Feshbach resonance (OFR), dealing with one band and two-band physics, respectively. In orbital Feshbach resonance, the energy difference between open and closed channels is in the range of Fermi energy or even smaller, reducing to zero or at no magnetic field. The atomic structural analysis of one valence electron in the outermost orbit for alkali atoms has widely explored the superfluidity and single-particle phenomena. The system of alkaline-earth atoms provides an excellent opportunity for the investigation of quantum simulation and quantum many-body matters such as the simulation of synthetic gauge field, Kondo physics, and SU(N) physics. This work studies spin-orbit coupled (SOC) physics in alkaline-earth (AE) atoms like 173Yb in two different electronic and nuclear hyperfine states. We discuss the interaction between particles in the hyperfine states by varying the interatomic distance. Here we will discuss short-range potential (in singlet and triplet channels at finite field strength) and long-range potential (open and closed channels for zero-field strength). We discuss the single-particle density-of-states (DOS) in the open and closed channel above superfluid phase transition temperature to study the normal-state properties of two particular nuclear hyperfine states.}, year = {2022} }
TY - JOUR T1 - Dependence of Orbital Feshbach Resonance in 173Yb on the Nuclear Hyperfine States AU - Soumita Mondal Y1 - 2022/03/31 PY - 2022 N1 - https://doi.org/10.11648/j.ajpa.20221002.13 DO - 10.11648/j.ajpa.20221002.13 T2 - American Journal of Physics and Applications JF - American Journal of Physics and Applications JO - American Journal of Physics and Applications SP - 38 EP - 44 PB - Science Publishing Group SN - 2330-4308 UR - https://doi.org/10.11648/j.ajpa.20221002.13 AB - A system of ultracold alkali (6Li, 40K) and alkaline-earth atoms (87Sr) will investigate the quantum simulation properties. Feshbach resonance (FR) is an essential tool for changing the interaction between particles by changing the magnetic field strength between the atoms. FR are of two kinds magnetic Feshbach resonance (MFR) and orbital Feshbach resonance (OFR), dealing with one band and two-band physics, respectively. In orbital Feshbach resonance, the energy difference between open and closed channels is in the range of Fermi energy or even smaller, reducing to zero or at no magnetic field. The atomic structural analysis of one valence electron in the outermost orbit for alkali atoms has widely explored the superfluidity and single-particle phenomena. The system of alkaline-earth atoms provides an excellent opportunity for the investigation of quantum simulation and quantum many-body matters such as the simulation of synthetic gauge field, Kondo physics, and SU(N) physics. This work studies spin-orbit coupled (SOC) physics in alkaline-earth (AE) atoms like 173Yb in two different electronic and nuclear hyperfine states. We discuss the interaction between particles in the hyperfine states by varying the interatomic distance. Here we will discuss short-range potential (in singlet and triplet channels at finite field strength) and long-range potential (open and closed channels for zero-field strength). We discuss the single-particle density-of-states (DOS) in the open and closed channel above superfluid phase transition temperature to study the normal-state properties of two particular nuclear hyperfine states. VL - 10 IS - 2 ER -