American Journal of Quantum Chemistry and Molecular Spectroscopy

Archive

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

3-Sphere Approach on 9-O-(10,11-di-O-benzyl-12,14-O-benzylidene-α-D-galactopyranosyl)-1-butyl-2,3-O-isopropylidene-1,4-dideoxy-1,4-imino-1-N-dehydro-L-ribitol

The conformation of 9-O-(10,11-di-O-benzyl-12,14-O-benzylidene-α-D-galactopyranosyl)-1-butyl-2,3-O-isopropylidene-1,4-dideoxy-1,4-imino-1-N-dehydro-L-ribitol 1, phase angles of the pseudorotation of five (C3) and six (C14) membered rings, was analyzed with dihedral angles θHnHn+1[deg] calculated only from vicinal coupling constants 3JHH[Hz] with 3-Sphere approach and VISION molecular models. The dimension space around the six and five membered ring are established based on hypersphere equations results from calculation of the dihedral angles from carbon chemical shift. Higher biological activity was observed to date at iminocyclitols having dihedral or vicinal angles calculated in 2D. Tetrahedral angles in close relationships with dihedral angles are calculated from carbon and / or proton chemical shift with manifold equations, conic and rectangle geometries. Equations for calculation of the tetrahedral angles φCn[deg] only from vicinal coupling constant 3JHnHn+1[deg] or from chemical shift δCn[ppm] are analyzed for five and established for six membered ring, resulting general rules for calculation of tetrahedral angles. Conic as manifold in case of six membered ring enable calculation of dihedral angle θHnHn+1[deg] from tetrahedral angle φCn[deg] starting with tetrahedral angle on unit, and in case of five membered ring based on opposite relationship between dihedral and tetrahedral (sin versus tan function), unit start with dihedral angles. Rectangle as manifold enable calculation for both the tetrahedral angle from dihedral angle starting with dihedral angle on unit, for six membered ring using two or three units with three sets angles and in case of five membered ring only one unit with seven set angles. The bond distances lCnCn+1 [A0] of five and six membered ring are calculated from 3-Sphere-dihedral angles θHnHn+1[deg].

3-Sphere-Dihedral Angles, Phase Angle of the Pseudorotation, Tetrahedral Angles, Bond Distances

APA Style

Moriarty, R. M., Mitan, C., Bartha, E., Filip, P., Naithani, R., et al. (2024). 3-Sphere Approach on 9-O-(10,11-di-O-benzyl-12,14-O-benzylidene-α-D-galactopyranosyl)-1-butyl-2,3-O-isopropylidene-1,4-dideoxy-1,4-imino-1-N-dehydro-L-ribitol. American Journal of Quantum Chemistry and Molecular Spectroscopy, 8(1), 1-12. https://doi.org/10.11648/ajqcms.20240801.11

ACS Style

Moriarty, R. M.; Mitan, C.; Bartha, E.; Filip, P.; Naithani, R., et al. 3-Sphere Approach on 9-O-(10,11-di-O-benzyl-12,14-O-benzylidene-α-D-galactopyranosyl)-1-butyl-2,3-O-isopropylidene-1,4-dideoxy-1,4-imino-1-N-dehydro-L-ribitol. Am. J. Quantum Chem. Mol. Spectrosc. 2024, 8(1), 1-12. doi: 10.11648/ajqcms.20240801.11

AMA Style

Moriarty RM, Mitan C, Bartha E, Filip P, Naithani R, et al. 3-Sphere Approach on 9-O-(10,11-di-O-benzyl-12,14-O-benzylidene-α-D-galactopyranosyl)-1-butyl-2,3-O-isopropylidene-1,4-dideoxy-1,4-imino-1-N-dehydro-L-ribitol. Am J Quantum Chem Mol Spectrosc. 2024;8(1):1-12. doi: 10.11648/ajqcms.20240801.11

Copyright © 2024 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. C.-I. Mitan, E. Bartha, F. Petru, C. Draghici, M.-T. Caproiu, R. M. Moriarty, Manifold inversion on prediction dihedral angle from vicinal coupling constant with 3-sphere approach, Rev. Roum. Chim. 2023, 68, 185; DOI: 10.33224/rrch.2023.68.3-4.08.
2. C.-I. Mitan, E. Bartha, C. Draghici, M. T. Caproiu, P. Filip, R. M. Moriarty, Hopf fibration on relationship between dihedral angle θHnHn+1[deg] and vicinal angle ϕ[deg], angles calculated from NMR data with 3-sphere approach and Java Script, Science Journal of Chemistry 2022, 10, 21. SciencePG: DOI: 10.11648/j.sjc.20221001.13.
3. E. Bartha, C.-I. Mitan, C. Draghici, M. T. Caproiu, P. Filip, R. Moriarty, Rectangle as manifold on relationships between vicinal constant couplings 3JHH, 1H and 13C-chemical shifts and dihedral angles, Rev. Roum. Chim. 2022, 67(3), 167 – 172. DOI: 10.33224/rrch.2022.67.3.05.
4. C.-I. Mitan, E. Bartha, P. Filip, Relationship between tetrahedral and dihedral on hypersphere coordinates, Rev. Roum. Chim. 2023, 68(5-6), 261; DOI: 10.33224/rrch.2023.68.5-6.09.
5. C.-I. Mitan, E. Bartha, P. Filip, Tetrahedral angles of six membered ring calculated from NMR data with 3-sphere approach, Rev. Roum. Chim. 2023, 68(5-6), 273; DOI: 10.33224/rrch.2023.68.5-6.10.
6. C.-I. Mitan, E. Bartha, P. Filip, C. Draghici, M. T. Caproiu, R. M. Moriarty, Dihedral angles calculated with 3-sphere approach as integer in conformational analysis on D-, L- ribitol series, Rev. Roum. Chim. 2022, 66(21), 941, DOI: 10.33224/rrch.2021.66.12.07.
7. W. Zou, D. Izotov, D. Cremer, New way of describing static and dynamic deformations of the Jahn-Teller in ring molecules, J. Phys. Chem. A. 2011, 115, 8731; dx.doi.org/10.1021/jp2041907.
8. A. Wu, D. Cremer, New approach for determining the conformational features of pseudorotating ring molecules utilizing calculated and measured NMR spin-spin coupling constants, J. Phys. Chem. A 2003, 107, 1797: doi.org/10.1021.jp022277m.
9. W. J. Adams, H. J. Geise, L. S. Bartell, Structure, equilibrium conformation, and pseudorotation in cyclopentene. An electron diffraction study, J. Am. Chem. Soc.1970, 92, 5013; doi.org/10.1021/ja10720a001.
10. P. Herzyk, A. Rabczenko, A new description of equilateral five-membered rings during pseudorotation, J. Chem. Soc. Perkin. Trans. II, 1983, 213; doi.org/10.1039/P29830000213.
11. D. Cremer, Calculation of puckered rings with analytical gradients, J. Phys. Chem. 1990, 94, 5502; doi.org/10.1021/j100377a017.
12. A. H. Hill, P. J. Reilly, Puckering coordinates of monocyclic rings by triangular decomposition, J. Chem. Inf. Model 2007, 47, 1031; doi.org/10.1021/ci600492e.
13. C. B. Barnett, K. J. Naidoo, Calculating ring pucker free energy surfaces from reaction coordinate forces, AIP Conference Proceedings 2009, 214, 1102; doi.org/10.1063/1.3108377.
14. C. B. Barnett, K. J. Naidoo, Ring puckering: A metric for evaluation the occuracy of AM1, PM3, PM3CARB-1, and SCC-DFTB carbohydrate QM/MM simulations, J. Phys. Chem. B 2010, 114, 17142; doi.org/10.1021/jp107620h.
15. D. Wu, The puckering free energy surface of proline, AIP Advances 2013, 3, 032141; doi.org/10.10631/1.4799082.
16. A. Wu, D. Cremer, A. A. Auer, Extension of the Karplus relationship for NMR Spin Spin cupling constants to nonplanar ring systems: Pseudorotation of cyclopentene, J. Gauss, J. Phys. Chem. A 2002, 106, 657; doi.org/10.1021/jp0131601.
17. R. C. Lord, T. C. Rounds, T. Ueda, For infrared spectra of ring coumponds. X. Hindered pseudorotation in six membered rings: Estimation of the barrier height for half chair inversion in dioxane and 2,3-dihydropyrane, J. Chem. Phys.1972, 2572; doi.org/10.1063/1.1678625.
18. J. Jang, J. Lanne, Calculation of kinetic energy functions for the ring-twisting and ring-bending vibrations at tetralin and related molecules, J. Mol. Str. 2006, 798, 27; doi.org/10.1016/j.molstruc.2006.07.024.
19. K. Kitamura, A. Wakahara, H. Mizuno, Y. Baba, K. I. Tomita, Conformationally ‘concerted’ changes in nucleotide structures. A new description using circular correlation and regression analyses, J. Am. Chem. Soc.1981, 103, 3899; doi.org/10.1021/ja00403a048.
20. C. Altona, M. Sundaralingam, Conformational analysis of the sugar ring in nucleosides and nucleotides, A new description using the concept of pseudorotation, J. Am. Chem. Soc. 1972, 94, 8205: doi.org/10.1021/ja00778a043.
21. K. Nauwelaerts, E. Lescrinier, G. Sclep, P. Herdewijn, Cyclohexenyl nucleis acids: conformationally flexible oligonucleotides, Nucleic Acids Research 2005, 33; doi: 10.1093/nar/gki 538.
22. E. Bartha, C.-I. Mitan, P. Filip 3-Sphere Torsional Angles and Six Membered Ring Conformation, American Journal of Quantum Chemistry and Molecular Spectroscopy 2023, 7(1), 9. SciencePG: doi: 10.116481j.ajqcms.20230701.12.
23. R. M. Moriarty, C.-I. Mitan, B. Gu, T. Block, Hypersphere and Antiviral Activity of three Alkyl Chain Imnocyclitols with D and L Ribitol Stereochemistry, American Journal of Heterocyclic Chemistry 2023, 9(1), 9-24. SciencePG: doi: 10.116481/jajhc20230901.12, ISSN: 2575-7059(Print), ISSN: 2575-5722 (online).
24. C.-I. Mitan, E. Bartha, P. Filip, Hypersphere coordinates on calculation of the dihedral angles from carbon chemical shift, Bulletin of Romanian Chemical Engineering Society 2022, 9(2), 151; ISSN 2360-4697.
25. R. M. R. M. Moriarty, C.-I. Mitan, N. Branza-Nichita, K. R. Phares, D. Parrish, exo-Imino to endo-Iminocyclitol Rearrangement. A General Route to Five-Membered Antiviral Azasugars, Org. Lett. 2006, 8, 3465.
26. C.-I. Mitan, E. Bartha, P. Filip, M.-T. Caproiu, C. Draghici, R. M. Moriarty, Graph Flux Intensity and Electromagnetic Wave on 3-sphere Approach, Science Journal of Chemistry 2023, 11, 212; SciencePG: doi: 10.11648/j.sjc.20231106.1226.
27. Z. B. Maksic, M. Randic, Carbon-Carbon and Carbon-Hydrogen bond length bond overlap correlations, J. Am. Chem. Soc. 1070, 92, 424; doi.org/10.1021/ja00705a627.